SYMMETRY -INDUCED MODAL CHARACTERISTICS OF UNIFORM WAVEGUIDES

Paul R.

McIsaac
School of Electrical Engineering
Cornell University
Ithaca, New York 14850

Abstract

The application of symmetry analysis to uniform waveguides is discussed.

Symmetry analy -

sis provides exact information concerning mode classification, mode degeneracy, modal field
symmetries, and the minimum waveguide sectors which completely determine the modes in each

mode class.
Introduction

Symmetry analysis can provide information
about the general characteristics of the modes
of microwave, millimeter, and optical wave-
guides, and it can suggest strategies to
minimize the computer time required when a
numerical analysis of the modes of a partic-
ular structure is undertaken. In this paper,
symmetry analysis is applied to uniform wave -
guides which may le transversely inhomogeneous
but whose media are isotropic and piecewise-
homogenecous .

Symmetry analysis, which is based on the
theory of group representations, enables one
to: classify all of the modes of a waveguide
into mode classes based on the modal field
symmetries, determine the possible mode
degeneracies between mode classes, determine
the azimuthal symmetries of the modal electro-
magnetic fields for each mode class, and
specify the minimum sector of the waveguide
cross section which can completely determine
the modes of a given mode class. All of
these results are obtained from a knowledge of
the waveguide symmetry type, and solving a
boundary value problem is not required.

Symmetry Analysis of Uniform Waveguides

Uniform waveguides bLelong to one of two
families of symmetry types based on the
spatial operations which leave the waveguide
cross section unchanged in appearance. For
the first family of symmetry types, the only
symmetry operations are rotations about the
waveguide axis. If the minimum rotation which
leaves the cross section unchanged is 2w/n
radians (n an integer), then there are a total
of n different rotations which are symmetry
operations: 2n/n, 4n/n, 6n/n, - - -,
2(n-1)n/n, and 27 radians (the last rotation
is the identity operation). A waveguide with
these symmetry operations is said to have C
symmetry. Figure 1 shows the cross sections
of several waveguides with C, symmetry.

A waveguide may have reflection symmetry
in a plane containing the waveguide axis in
addition to rotation symmetry. If a waveguide
with C, symmetry has at least one such
reflection plane, then it must have exactly n
reflection planes, spaced azimuthally ly u/n
radians. A waveguide with both reflection and
rotation symmetry operations is said to have
Cphy Symmetry. Figure 2 shows the cross
sections of several waveguides with Chv
symmetry .
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For a given waveguide symmetry type, Cn
or C__, all of the modes can be classified
into”"a number of mode classes with the total
nunber of mode classes depending on the value
of n in C, or C,y,. The modal electromagnetic
fields for all of the modes in the same mode
class will have the same general azimuthal
symmetry, although the detailed dependence on
the azimuthal coordinate may differ. The
major differences between the field patterns
for different modes in the same mode class
lie in their radial variations. The value of
n also determines the number of mode classes
with non-degenerate modes and the number of
mode class pairs with mutually degenerate
modes . Tables 1 and 2 show the number of
mode classes and the mode degeneracies for
waveguides with C, and C,, symmetries,
respectively. These tables apply to the
infinite number of modes vhich form the
discrete mode spectrum of closed-boundary
waveguides, as well as to the finite number
of modes in the discrete mode spectrum and
the continuous spectrum of modes in an open-
boundary waveguide.

The various mode classes for waveguides
of a particular symmetry type are distin-
guished by the azimuthal symmetry of their
modal electromagnetic fields. That is, for
any of the mode classes belonging to this
symmetry type, one can describe the general
azimuthal symmetry of the modal electric and
magnetic fields. Further, based on the
azimuthal symmetry of the electromagnetic
fields of a mode class, one can specify a
minimum sector of the waveguide cross section,
together with associated boundary conditions
for this sector, which is necessary and
sufficient to completely determine all the
modes of that mode class. This will be
illustrated for two specific waveguides.

Figure 3a shows a closed-boundary
waveguide with C, symmetry. This wave-
guide has a total of four mode classes; two
of these are non-degenerate, while the other
two mode classes form a pair with mutually
degenerate modes. Figures 3b and 3d show the
mininum waveguide sectors which completely
determine the modes of the two non-degenerate
mode classes. Here, dotted lines indicate
periodic boundary conditions for the sector,
and dot-dash lines indicate quasi-periodic
boundary conditions (fields equal in magni -
tude, but reversed in sign). Figure 3¢ shows
the minimum waveguide sector for the pair of
degenerate mode classes. Solution of the
appropriate boundary value problem in any of



the minimum waveguide sectors shown will
provide the modes belonging to the mode
class associated with that sector.

Figure 4a shows an open-boundary wave-
guide which has seven dielectric rods (or
fibers) in a close-packed structure with C6V
symmetry. This waveguide has a total of
eight mode classes; of these, four are non-
degenerate, and the other four form two pairs
with each pair having mutually degenerate
modes . Figures 4b, 4c, 4f, and 4g show the
minimum waveguide sectors which completely
determine the non-degenerate mode classes.
Solid lines indicate a short-circuit
boundary, while dashed lines indicate an
open-circuit boundary. Figures 4d and 4e
show the minimum waveguide sectors which
completely determine the modes of the
degenerate mode class pairs. Note that in
this case, two figures are given for each
degenerate mode class pair; thus the

Tatle 1.
n " Numlber of non-degenerate
mode classes
odd 1
even 2
o 1
Table 2.
n Number of non-degencrate
mode classes
odd 2
even 4
® 2

Number of pairs of two-fold
degenerate mode classes

Number of pairs of two-fold
degencrate mode classes
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degeneracy is removed if these minimum wave -
guide sectors are used to determine the modes
of each mode class. Again, solution of the
appropriate boundary value problem in any of
the minimum waveguide sectors shown will
provide the modes belonging to the mode class
associated with that sector.

Conclusion

These two examples illustrate some of
the information that can be derived from
symmetry analysis of uniform waveguides,
based on the symmetry type of the structure
under consideration. In particular, the
cataloging of the modes into degenerate or
non-degenerate mode classes was illustrated,
and the minimum waveguide sectors for the
mode classes were displayed. The use of the
minimum waveguide sectors should enable an
appreciable reduction in computation time in
any numerical analysis of a symmetrical
waveguide structure.

Talble of mode classes and mode degeneracies for uniform waveguides with C, symmetry

Total number of
mode classes

(n-1)/2 n
(n-2)/2 n

Table of mode classes and mode degeneracies for uniform waveguides with Chy Symmetry

Total number of
mode classes

(n-1)/2 n+l
(n-2)/2 n+2
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Fig. 1. Uniform waveguides with Cn symmetry . Fig. 2. Uniform waveguides with Cnv symmetry.
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Fig. 3. Minimum waveguide sectors for a Fig. 4. Minimum waveguide sectors for a
waveguide with C, symmetry. . waveguide with Cgy symmetry.
(a) Waveguiﬁe with C4 symmetry. (a) Waveguide with Cg, symmetry.
(b) First mode class. (b) First mode class.
(c) Second and third mode classes. (¢) Second mode class.
(d) Fourth mode class. (d) Third and fourth mode classes.

(e) Fifth and sixth mode classes.
(f) Seventh mode class.
(g) Eighth mode class.
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