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Abstract

The application of symmetry analysis to uniform waveguides is discussed. Symmetry analy-

sis provides exact information concerning mode classification, mode degeneracy, modal field
symmetries , and the minimum waveguide sectors which comvletelv determine the modes in each
m-ode class ~

Introduction— ————__

Symmetry analysis can provide information
about the general characteristics of the modes
of microwave, millimeter, and optical wave-
guides, and it can suggest strategies to
minimize the computer time required when a
numerical analysis of the modes of a partic-
ular structure is undertaken. In this paper,
symmetry analysis is applied to uniform wave-
guides which may Le transversely inhomogeneous,
but whose media are isotropic and piecewise -
homogeneous .

Symmetry analysis, which is based on the
theory of group representations, enables one
to: classify all of the modes of a waveguide
into mode classes based on the modal field
symmetries , determine the possible mode
degeneracies between mode classes, determine
the azimuthal symmetries of the modal electro-
magnetic fields for each mode class, and
specify the minimum sector of the waveguicle
cross section whicil can complctily determine
the modes of a given mode class. All of
these results are obtained from a knowledge of
the waveguide symmetry type, and solving a
boundary value problem is not required.

Symmetry Analysis of Uniform Wavequides

Uniform kaveguides l~elong to one of two
families of symmetry types based on the
spatial operations &hich leave the waveguide
cross section unchanged in appearance. For

the first family of symmetry types, the only
symmetry operations are rotations about the
waveguide axis . If the minimum rotation which
leaves the cross section unchanged is 2~/n
radians (n an integer), then there are a total
of n different rotations hhich are symmetry
operations : 2n/n, 4n/n, 6n/n, - - -,
2(n-l)n/n, and 2X radians (tile last rotation
is the identity operation). A kaveguide with
these symmetry operations is said to have Cn
symmetry. Figure 1 shows the cross sections
of several waveguides with Cn symmetry.

A mveguide may have reflection symmetry
in a plane containing the waveguide axis in
addition to rotation symmetry. If a \:aveguide
with Cn. symmetry has at least one such
reflection plane, then it must have exactly n
reflection planes, spaced azimuthally ~ w/n
radians . A haveguide t,ith both reflection and
rotation symmetry operations is said to have
Cnv symmetry. Figure 2 shows the cross
sections of several waveguides kith Cnv
symmetry.

For a given wave.guide symmetry type, Cn
or C
intonv’

all of the modes can be classified
a number of mode classes kith the total

number of mode classes depending on the value
of n in Cn or Cn . The modal electromagnetic
fields for all o} the modes in the same mode
class will have the same general azimuthal
symmetry, although the detailed dependence on
the azimuthal coordinate may differ. The
major differences between the field patterns
for different modes in the same mode class
lie in their radial variations. The value of
n also determines the number of mode classes
tiith non-degenerate modes and the number of
mode class pairs with mutually degenerate
modes . Tables 1 and 2 show the number of
mode classes and the mode degeneracies for
waveguides with Cn and C v symmetries,
respectively . These tabyes apply to the
infinite number of modes vhich form the
discrete mode spectrum of closed-boundary
waveguides , as well as to the finite number
of modes in the discrete mode spectrum and
the continuous spectrum of modes in an open-
boundary waveguide.

The various mode classes for waveguides
of a particular symmetry type are distin-
guished by the azimuthal symmetry of their
modal electromagnetic fields. “rhat is, for
any of the mode classes belonging to this
symmetry type, one can describe the general
azimuthal symmetry of the modal electric and
magnetic fields . Further, based on the
azimuthal symmetry of the electromagnetic
fields of a mode class, one can specify a
minimum sector of the waveguide cross section,
together with associated boundary conditions
for this sector, which is necessary and
sufficient to completely determine all the
modes of t}lat mode class . This will be
illustrated for tm specific waveguides.

Figure 3a shok’s a closed-boundary
waveguide with C This wave-
guide hasatota? %’’’!~~~y;ocl asses;s; tko
of these are non-degenerate, while the other
two mode classes form a pair witil mutually
degenerate modes. Figures 3’0 and 3d show the
minimum waveguide sectors khich completely
determine the modes of the two non-degenerate
mode classes . Ilere, dotted lines indicate
periodic boundary conditions for the sector,
and dot-dash lines indicate quasi-periodic
boundary conditions (fields equal in magni-
tude , but reversed in sign). Figure 3C shows

the minimum waveguide sector for the pair of
degenerate mode classes. Solution of the
appropriate boundary value problem in any of
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the minimum waveguide sectors shohn will
provide the modes belonging to the mode
class associated with that sector.

Figure 4a sho~s an open-boundary wave-
guide which has seven dielectric rods (or
fibers) in a close-packed structure with C6V
symmetry. Tnis waveguide has a total of
eight mode classes; of these, four are non-
degenerate, and the other four form two pairs
with each pair having mutually degenerate
modes . Figures 4b, 4c, 4f, and 4g show the
minimum waveguide sectors which completely
determine the non-degenerate mode classes.
Solid lines indicate a short-circuit
boundary, tilile dashed lines indicate an
open-circuit boundary. Figures 4d and 4e
show the minimum k’aveguide sectors which
completely determine the modes of the
degenerate mode class pairs. Note that in
this case, two figures are given for each
degenerate mode class pair; thus the

degeneracy is removed if these minimum wave-
guide sectors are used to determine the modes
of each mode class. Again, solution of the
appropriate boundary value problem in any of
the minimum wveguide sectors shown will
provide the modes belonging to the mode class
associated with that sector.

Conclusion

These tw examples illustrate some of
the information that can be derived from
symmetry analysis of uniform waveguides ,
based on the symmetry type of the structure
under consideration. In particular, the
cataloging of the modes into degenerate or
non-degenerate mode classes was illustrated,
and the minimum waveguide sectors for the
mode classes were displayed. The use of the
minimum !~aveguide sectors should enable an
appreciable reduction in computation time in
any numerical analysis of a symmetrical
waveguide structure.

Table 1. Table of mode classes and mode degeneracies for uniform haveguides with Cn symmetry

n ,Number of non-degenerate Number of pairs of two-fold Total number of
mode classes degenerate mode classes mode classes

odd 1 (n-1)/2 n

even 2 (n-2)/2 n

. 1 . m

Table 2. Table of mode classes and mode degeneracies for uniform ~,ave.quides with Cnv symmetry

n Number of non-degenerate Number of pairs of tw-fold Total number of
mode classes degenerate Hlode classes mode classes

odd 2 (n-1)/2 n+ 1

even 4 (n-2)/2
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Fig. 1. Uniform waveguides with Cn symmetry. Fig. 2. Uniform baveguides with Cnv symmetry.
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sectors for a Fig. 4. Minimum waveguide sectors for
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symmetry . waveguide with C6v symmetrY.

(a) Wavegul e Xith C4 symmetrY. (a) Waveguide with C6V symmetry.

(b) First mode class. (b) First mode class.

(c) Second and third mode classes. (c) Second mode class.

(d) Fourth mode class. (d) Third and fourth mode classes
(e) Fifth and sixth mode classes.

a

(f) Seventh mode class.

(g) Eighth mode class.
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